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SUMMARY: 
Long-span, cable-supported bridges are sensitive to wind effects due to the deck slenderness and aerodynamic 
properties. Flutter is usually a major design concern. This study continues the investigation on a prototype of a 
gyroscopic device, used as an active stabilizer to improve flutter performance. A model of the gyroscopic device, 
installed at multiple sectional positions under the bridge deck, is used to assess effectiveness in increasing the critical 
flutter wind speed. The study evaluates the stabilizers’ performance on a benchmark long-span bridge as a function of 
the gyricity. A parametric study is conducted to evaluate the stabilizer’s performance on a benchmark long-span cable-
supported bridge as a function of its mechanical properties. Critical speed has been calculated by varying the gyricity 
and the angular frequency of the gyroscope’s dynamic system. The results demonstrate that a multi-unit gyroscopic 
stabilizer, within its practical operational range, can positively influence the bridge flutter threshold of the considered 
long-span bridge. 
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1. INTRODUCTION 
The last decade has witnessed significant evolutions in the design of long-span, cable-supported 
bridges. Longer spans necessitate the study of new methodologies to increase the performance of 
these structures against wind loads. Flutter instability occurs when a bridge is exposed to a wind 
speed above a certain critical threshold. Above this threshold, vertical and torsional deck vibrations 
couple together. The diverging deck vibration can yield catastrophic structural failure. Aeroelastic 
instability can be predicted by analyzing the deck aeroelastic coefficients or Scanlan derivatives 
(SDs) (Scanlan and Tomko, 1971). Various control methods have been proposed to improve the 
performance: aerodynamic countermeasures (Chen and Kareem, 2003; Kwon et al., 2000), control 
surfaces and appendages (Kwon and Chang, 2000; Kwon et al., 2000; Omenzetter et al., 2002), 
passive tuned-mass dampers (Chen and Kareem, 2003; Pourzeynali and Datta, 2003) and actively 
controlled devices (Kobayashi and Nagaoka, 1992; Wilde et al., 2001), among several others. 
Gyroscopic devices have routinely been employed in various engineering fields (D'Eleuterio, 
1986; Ghommema et al., 2010; Kan et al., 1992) for vibration suppression but rarely considered in 
bridge engineering. A study has explored the application of gyroscopic devices for seismic 
vibration isolation (Carta et al., 2017) and recently considered their use as a stabilizer against 
bridge flutter (Giaccu and Caracoglia, 2021). This study continues the exploration of gyroscopic 
stabilizing devices to improve bridge flutter performance. Structural dynamic interaction between 



the bridge deck and the gyroscopic devices is simulated by a reduced-order model. Multi-unit 
gyroscopic devices are installed at various sectional positions under the deck. Results suggest that 
the use of multi-unit gyroscopic stabilizers yields noteworthy increase of the critical wind speed, 
employing more devices with smaller mass moment of inertia compared to previous results using 
a larger, single unit stabilizer. The devices also exhibit robustness against variations of dynamic 
bridge properties. 
 
2. MODEL DESCRIPTION  
As a first example, two sets of gyroscopic devices are installed under the bridge deck at two deck 
cross sections, located at longitudinal deck coordinates 𝑥 ,  and 𝑥 , . Fig. 1 shows the schematics 
of the stabilizer, installed underneath a truss-bridge deck superstructure at either cross section.  

(a) (b) (c) 

Figure 1. Bridge deck: (a) cross-section with gyroscopic stabilizer, (b) top view, (c) 3D lateral view with aeroelastic loads. 
 
Each gyroscopic unit is modeled as a system with a lumped mass moment of inertia and three 
rotational DOFs (degrees of freedom), connected to the deck by a spring of stiffness 𝑘  and a 
dashpot with damping coefficient 𝑐 . Fig. 1 illustrates the layout of a single unit with the lumped 
rotating mass 𝑀 , ; 𝐽 , = 𝑀 , 𝜌  is the polar mass moment of inertia with respect to the 

high-speed rotation axis; 𝜌  is the radius of gyration of the gyroscopic stabilizer. The gyricity of 
the gyroscopic device can be expressed as 𝛀 = 𝐽 , 𝛚  where 𝛚  is the angular velocity vector 
of the gyroscope, which is usually pre-set. Each gyroscope has three DOFs, denoted as 𝜃 =
𝜃(𝑥 , , 𝑡), 𝜓 (𝑡), 𝛼 (𝑡) and 𝜃 = 𝜃(𝑥 , , 𝑡), 𝜓 (𝑡), 𝛼 (𝑡) (Fig. 1c), respectively for device “1”, 
located at deck coordinate 𝑥 ,  and “2” at coordinate 𝑥 ,  , with time t; 𝜃(𝑥, 𝑡) denotes the 
torsional rotation of the bridge deck at cross section x. This model is reduced to 1 DOF per 
stabilizer since 𝜓 ≈ 𝜓̇ ≈ �̈� ≈ 0 and 𝜓 ≈ �̇� ≈ 𝜓̈ ≈ 0 (Giaccu and Caracoglia, 2021); the 
dot marker indicates derivative with respect to time. 
 
The bridge deck dynamic equilibrium equations (vertical direction and torsional rotation) at cross 
section 𝑥 and time 𝑡 are described in Eqs. (1-2) below, while Eqs. (3-4) are the lumped-mass 
gyroscope equilibria at 𝑥 ,  and 𝑥 , : 
 
𝑚 𝜕 ℎ + 𝑐 𝜕 ℎ + 𝑘 ℎ = 𝐿 (𝑥, 𝑡) (1) 

[𝐽 + 𝐽 𝛿(𝑥 − 𝑥 ) + 𝐽 𝛿(𝑥 − 𝑥 )]𝜕 𝜃 + 𝑐 𝜕 𝜃 + 𝑘 𝜃 = 

−Ω𝛿(𝑥 − 𝑥 ) �̇� + �̇� − Ω𝛿(𝑥 − 𝑥 ) �̇� + �̇� + 𝑀 (𝑥, 𝑡) (2) 

𝐽 (�̈� + �̈� ) + 𝑐 �̇� + 𝑘 𝛼 = Ω�̇�(𝑥 , , 𝑡) (3) 

𝐽 (�̈� + �̈� ) + 𝑐 �̇� + 𝑘 𝛼 = Ω�̇�(𝑥 , , 𝑡) (4) 



In the previous equations 𝐽 , 𝑘  and 𝑐  respectively are moment of inertia, stiffness and 
damping coefficients of the lumped-mass gyroscopes, depending on the rotational DOFs 𝛼  and 
𝛼 . Aeroelastic lift and moment loads per unit deck span in Eqs. (1-2), 𝐿 (𝑥, 𝑡) and 𝑀 (𝑥, 𝑡), 
are described by SDs. Quantities 𝐽  and 𝑚  are the inertial and mass terms of the deck; 𝑐  and 
𝑐  are equivalent viscous damping constants of the deck in the corresponding directions of 
vibration; 𝑘  and 𝑘  simulate the elastic constants, related to the internal deck stiffness. The 
quantity 𝛿(𝑥) is the Dirac delta function. In Eqs. (3-4) �̇�(𝑥 , , 𝑡) and �̇�(𝑥 , , 𝑡) are angular 
(torsional) velocities of the deck at sections 𝑥 ,  and 𝑥 , . 
 
Eqs. (1-2) are first reduced to ordinary differential equations by modal superposition. In this study, 
modal superposition is limited to the two fundamental deck modes that mainly contribute to flutter, 
namely a fundamental flexural one (“v1”) one and a torsional (“t1”) one. Consequently, the deck 
displacements and rotations in Eqs. (1-2) are expressed as ℎ(𝑥, 𝑡) ≈ 𝜉 (𝑡)𝐵ℎ (𝑥), 𝜃(𝑥, 𝑡) ≈
𝜉 (𝑡)𝜃 (𝑥)  with: 𝐵  deck width, ℎ (𝑥)  and 𝜃 (𝑥)  dimensionless deck mode shape 
functions, 𝜉 (𝑡) and 𝜉 (𝑡) generalized, dimensionless coordinates of modes v1 and t1.  
 
Aeroelastic instability is solved by multi-mode approach (Jain, 1996). After modal expansion, a 
system of four generalized equations is derived in the dimensionless time 𝑠 = 𝑡𝑈/𝐵. The variables 
of the reduced-order model are: 𝜉 , 𝜉 = d𝜉 /d𝑠 and 𝜉 = d 𝜉 /d𝑠  with g={v1,t1}, and 𝛼 , 
𝛼 . After Fourier transformation, incipient flutter instability is examined by enforcing simple 
harmonic deck motion; the generalized coordinates are expressed in vector form as 𝛏 =

𝜉̅ , 𝜉̅ , 𝛼 , 𝛼 , with superscript 𝑇 denoting transpose operator and overbar Fourier transform. 
The vector 𝛏  includes both the generalized coordinates of 𝑣1 and 𝑡1 and the relative gyroscope 
rotation variables. Flutter threshold is found after re-writing the equilibrium equations in the 
frequency domain and in homogenous form as 𝐄 (𝐾, 𝜒)𝛏 = 𝟎, where 𝐄 (𝐾, 𝜒) is a complex 
matrix that depends on the SDs, the reduced frequency at flutter 𝐾 = 𝜔𝐵/𝑈 and reduced angular 
frequency at flutter 𝜒 = 𝜔/𝜔 , normalized to the angular frequency of torsional mode t1, 𝜔 . 
 
3. NUMERICAL RESULTS 
Numerical investigation is conducted on the full-scale structural model of the Golden Gate Bridge; 
structural model properties and SDs are derived from Jain (1996). The stabilizers, each having a 
rotating mass with a radius of 2 m and a thickness of 0.2 m, are installed at two cross sections 
under the deck, two units at ¼ span and two units at ¾ span (ℓ= deck span length) Results are 
presented in Fig. 2. 
 

 
Figure 2. Flutter solution: sensitivity analysis results 
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In Fig. 2, the critical flutter speed has been calculated by varying the gyricity of each gyroscopic 
unit, Ω =kg m2 rad s-1, i.e., the angular velocity ω . The angular frequency of the gyroscope’s 
dynamic system [Eq.( 3) or (4)] is 𝜔 =  𝑘 /𝐽 = {0.3,0.4,0.5} [rad/s] (i.e., three scenarios).  
If the stabilizers are installed at deck sections 𝑥 , = 0.25ℓ and 𝑥 , = 0.75ℓ, we note that the 
torsional modal rotations of v1 are 𝜃 𝑥 , = −𝜃 𝑥 , , since this bridge has fundamental 
skew symmetric deck modes. Consequently, the sign of the gyricity Ω, i.e., angular velocity ω  
imparted to the device, installed at 𝑥 , , must be appropriate to avoid counteracting the effects of 
the device at 𝑥 , , and reducing the compound gyroscopic effect. 
 
4. CONCLUSIONS AND OUTLOOK 
The investigation conducted on the benchmark bridge model for different values of gyricity 
confirmed the beneficial effects of the multi-unit device on the structure and a noteworthy 
increment of critical flutter velocity. The increase of performance against flutter depends on the 
angular velocity ω  of the gyroscopic effect and the pulsation 𝜔  of the stabilizers. Compared 
to the reference flutter velocity without stabilizers (19.75 m/s) Jain (1996), the flutter threshold 
doubles (increment of 100%) if gyroscopes with angular velocity 𝜔 = 100 rad/s are installed. 
Research is still ongoing to optimize the performance for other configurations and long-span 
bridges. Studies will also investigate the behaviour of the gyroscopic devices, accounting for the 
eccentricity of the lumped mass 𝑀 , , design imperfections and installation misalignments. 
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